WELCOME TO THE CFZ BLOG NETWORK: COME AND JOIN THE FUN

Half a century ago, Belgian Zoologist Bernard Heuvelmans first codified cryptozoology in his book On the Track of Unknown Animals.

The Centre for Fortean Zoology (CFZ) are still on the track, and have been since 1992. But as if chasing unknown animals wasn't enough, we are involved in education, conservation, and good old-fashioned natural history! We already have three journals, the largest cryptozoological publishing house in the world, CFZtv, and the largest cryptozoological conference in the English-speaking world, but in January 2009 someone suggested that we started a daily online magazine! The CFZ bloggo is a collaborative effort by a coalition of members, friends, and supporters of the CFZ, and covers all the subjects with which we deal, with a smattering of music, high strangeness and surreal humour to make up the mix.

It is edited by CFZ Director Jon Downes, and subbed by the lovely Lizzy Bitakara'mire (formerly Clancy), scourge of improper syntax. The daily newsblog is edited by Corinna Downes, head administratrix of the CFZ, and the indexing is done by Lee Canty and Kathy Imbriani. There is regular news from the CFZ Mystery Cat study group, and regular fortean bird news from 'The Watcher of the Skies'. Regular bloggers include Dr Karl Shuker, Dale Drinnon, Richard Muirhead and Richard Freeman.The CFZ bloggo is updated daily, and there's nothing quite like it anywhere else. Come and join us...

Search This Blog

WATCH OUR WEEKLY WEBtv SHOW

SUPPORT OTT ON PATREON

SUPPORT OTT ON PATREON
Click on this logo to find out more about helping CFZtv and getting some smashing rewards...

SIGN UP FOR OUR MONTHLY NEWSLETTER



Unlike some of our competitors we are not going to try and blackmail you into donating by saying that we won't continue if you don't. That would just be vulgar, but our lives, and those of the animals which we look after, would be a damn sight easier if we receive more donations to our fighting fund. Donate via Paypal today...




Friday, June 12, 2009

`CAUSE IT'S WITH YOUR MUSSELS THAT YOU MOST EASILY OBTAIN KNOWLEDGE

FOR IMMEDIATE RELEASE
6/12/09

CONTACT: Suzanne Peyer, smpeyer@wisc.edu, 608-262-9225; Carol Eunmi Lee, carollee@wisc.edu, 608-262-2675

ZEBRA MUSSELS HANG ON WHILE QUAGGA MUSSELS TAKE OVER

MADISON - The zebra mussels that have wreaked ecological havoc on the Great Lakes are harder to find these days - not because they are dying off, but because they are being replaced by a cousin, the quagga mussel. But zebra mussels still dominate in fast-moving streams and rivers.

Research conducted by Suzanne Peyer, a doctoral candidate in the University of Wisconsin-Madison Department of Zoology, shows that physiological differences between the two species might determine which mollusk dominates in either calm or fast-moving waters.

"Zebra mussels quite rapidly colonized rivers close to the Great Lakes right after their introduction, within a year or two," Peyer explains. "Quagga mussels were introduced in the Great Lakes around 20 years ago, but they are still not found in the rivers or tend to be present in low numbers."

The mussels are similar in many ways. Their habitats overlap, and both are suspension feeders that filter water to extract their food. But the cousin species are different in many ways, too. Zebra mussels prefer to attach to a hard surface, while quagga mussels can live on soft bottoms, such as sand or silt. Zebra mussels also prefer warmer water temperatures and do not grow as big as quagga mussels.

Peyer's research focused on the ability of the mussels to attach to underlying material. Both species attach to rocks, sand, silt or each other by producing tiny but strong "byssal" threads, string-like strands of protein. These threads act as an adhesive that enable the mussels to attach to surfaces, regardless of how slippery the surface is. Byssal threads are the reason mussels are so difficult to remove from boats or water intake pipes.

Peyer collected both mussel species from Lake Michigan. In the lab, she subjected the mussels to different water velocities that simulated river flow conditions. Her research results supported her hypothesis that zebra mussels are able to produce more byssal threads than quagga mussels, enabling them to attach more securely to underlying material. They are also better able to hang on where water is flowing, such as in a river or stream.

"The results were that zebra mussels produced byssal threads at about twice the rate of quagga mussels," Peyer says. "Zebra mussels can ramp up their byssal thread production under different flows."

A statistical model Peyer developed also predicted that, with increasing velocity, zebra mussels produce more threads than quagga mussels.

According to this model, the zebra mussels show high plasticity, or the ability to adapt to changing environmental conditions. Plasticity can be an adaptive characteristic that allows an organism to survive under new conditions. In this case, the new condition is increased flow.

Zebra mussels are also able to stay attached better. At the highest velocity, only 10 percent of the zebra mussels detached, but 60-70 percent of the quagga mussels detached.

Results from her research, funded by the UW-Madison Sea Grant Institute, is published in the July 1 issue of the Journal of Experimental Biology.

According to Peyer's research adviser, Professor Carol Eunmi Lee at the UW-Madison Center of Rapid Evolution, no one has previously looked at differences in attachment between these species as an explanation for their distribution patterns in North America.

"It's the first time somebody actually went and systematically looked at functional differences between the two species that would explain the different kinds of substrate that they could invade," she says. "In that sense, Suzanne has produced a really elegant and clever study. It has very concrete hypotheses and results."

Zebra mussels were first introduced in the Great Lakes in the late 1980s, hitchhiking their way into North America in the ballast water of ships from the Caspian and Black Seas. Within a few years, zebra mussels had colonized shallow water, beaches and water-intake pipes in layers up to 8 inches thick. Although quagga mussels came onto the scene a few years later, they have recently become the dominant species in calm waters of the Great Lakes.

These mussels have permanently changed the ecosystem. Before the mussels invaded, Lake Michigan water was mostly cloudy and millions of tiny microorganisms provided a food base for fish. Because the mussels filter the microorganisms, the waters today are surprisingly clear, allowing light to penetrate to greater depths, which in turn promotes prolific, nuisance algae blooms.

Quagga mussels may be the reason Diporea, a small shrimp-like species that serves as a food source for larger fish, is no longer abundant. The whitefish that feed on Diporea are growing to less than half of their expected size.

Both Peyer and Lee hope that understanding the biological differences between the two mussel species will help those who manage the Great Lakes.

"We need to be aware of the distinct differences between the two species," Peyer says. "If we understand the differences in their biology, we might help to make management more efficient and more effective in the end."













No comments: